

Agilent N4010A Wireless Connectivity Test Set

Data Sheet

General Introduction

The Agilent N4010A Wireless Connectivity Test Set is a measurement solution that enables efficient and lower cost test for products and components that incorporate *Bluetooth*® wireless technology, Wireless LAN (WLAN), and other emerging wireless connectivity technologies.

The *Bluetooth* (N4010A Option 101) feature set provides the ability to connect to *Bluetooth* version 1.1 and 1.2 devices in either test mode or normal mode, and make measurements in accordance with the *Bluetooth* RF test specification. *Bluetooth* EDR link plus measurements (Option 107) add BTv2.0+EDR support and Enhanced Data Rate (EDR) measurement capabilities. *Bluetooth* audio generation and analysis (Option 113), and headset profile (Option 112) enable testing of *Bluetooth* voice channels, audio gateway, and headset products.

The N4017A *Bluetooth*® Graphical Measurement Application, a PC-based software product, works in a complementary manner with the N4010A test set and provides the ability to fully configure the test set and display both numerical and graphical results.

The Wireless LAN feature set (N4010A Option 102/103) combines a fully-calibrated vector signal generator and wide bandwidth signal analyzer into a single test set, which enables efficient and repeatable WLAN module test from R&D through to production.

The N4010A test set also works with the Agilent 89601A and 89607A Vector Signal Analyzer software. This software provides the flexibility to make a broad range of measurements for evaluating wireless formats in the 2.4 GHz or 5 GHz band, including ZigBee/IEEE 802.15.4.

The test set will meet its warranted performance after one hour within the stated environmental operating range plus 40 minutes after turn on. Unless otherwise stated all specifications are valid over the temperature range 20 to 30 °C. Supplemental characteristics are intended to provide additional information, useful in applying the instrument by giving typical (expected), but not warranted, performance parameters. These characteristics are shown in *italics* or labeled as nominal.

Bluetooth Specifications

N4010A Option 101 Bluetooth

- provides ability to act as a *Bluetooth* master, perform inquiry, and establish a connection in Test mode or Normal mode
- makes measurements in accordance with *Bluetooth* RF Test Specification 1.2
- integral sequencer allows test plans to be created and edited easily
- all tests default to SIG standard settings user may change settings to match particular test requirements

Bluetooth tests1

Output power

Link conditions

Link mode Test mode (loopback, Tx),

normal mode (ACL, SCO)

Hopping² On or off

Packet type² DH1, DH3, DH5, HV3

Payload² PRBS9, BS00, BSFF, BS0F, BS55

Measurement

Supported Average power, peak power

measurements

Number of measurement 3

 $channels^3\\$

Range +23 to -70 dBm

 $\begin{array}{ll} \mbox{Measurement resolution} & 0.01 \mbox{ dB} \\ \mbox{Measurement accuracy} & \pm 0.5 \mbox{ dB} \\ \end{array}$

Power control

Link conditions

Link mode Test mode (loopback, Tx)

Hopping On or off

Packet type DH1, DH3, DH5, HV3

Payload PRBS9, BS00, BSFF, BS0F, BS55

Measurement

Supported Average power, min/max step

measurements size Number of measurement 3

channels3

Range +23 to -70 dBm

 $\begin{array}{ll} \mbox{Measurement resolution} & 0.01 \mbox{ dB} \\ \mbox{Measurement accuracy} & \pm 0.5 \mbox{ dB} \\ \end{array}$

Modulation characteristics

Link conditions

Link mode Test mode (loopback, Tx),

normal mode (ACL, SCO)

Hopping² On or off

Packet type² DH1, DH3, DH5, HV3

Payload² BS55, BS0F

Measurement

Supported $\min/\max \Delta f1_{avg}, \min \Delta f2_{max}$ (kHz) measurements $\cot \Delta f2_{max} > \Delta f2_{max}$ lower limit (%)

ts total $\Delta f2_{max} > \Delta f2_{max}$ lower limit (%) min of min $\Delta f2_{avg} / max \Delta f1_{avg}$,

pseudo frequency deviation ($\Delta f1$ and $\Delta f2$) in normal mode

Number of measurement 3

channels³

RF input level range +23 to -70 dBm Deviation range -400 to +400 kHz

Deviation resolution 100 Hz Ratio resolution 0.1%

Measurement accuracy⁴ As frequency reference ±100 Hz

Performance of the N4010A signal source or signal analyzer over wider temperature (specified later in this document) applies to all the Bluetooth tests listed

Normal mode measurements made with hopping on, NULL packet, and no payload.

^{3.} Internal sequencer enables three measurement channels to be measured consecutively. Measurements on all 79 *Bluetooth* channels are supported.

^{4.} Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range \pm ((2.402 GHz x 10 Hz)/ 10 MHz) \pm 100 Hz = \pm 2402 Hz \pm 100 Hz = \pm 2502 Hz.

Initial carrier frequency tolerance

Link conditions

Link mode Test mode (loopback, Tx),

normal mode (ACL)

Hopping¹ On or off

Packet type¹ DH1, DH3, DH5, HV3

Payload¹ PRBS9, BS00, BSFF, BS0F, BS55

Measurement

Supported Maximum and minimum

measurements error/channel

Number of measurement 3

channels²

RF input level range +23 to -70 dBm

Frequency Nominal channel freq ±150 kHz Measurement accuracy³ as frequency reference ±100 Hz

Carrier frequency drift

Link conditions

Link mode Test mode (loopback, Tx),

normal mode (ACL)

Hopping¹ On or off

Packet type¹ DH1, DH3, DH5, HV3

Payload¹ PRBS9, BS00, BSFF, BS0F, BS55

Measurement

Supported Maximum and minimum measurements measurements drift at each

frequency during the test, pseudo frequency drift in

normal mode

Number of measurement 3

 $channels^{2}$

RF input level range +23 to -70 dBm Measurement range ±100 kHz

Measurement accuracy³ As frequency reference ±100 Hz

Sensitivity - single slot packets

Link conditions

Link mode Test mode (loopback, Tx),

normal mode (ACL)

Hopping¹ On or off Packet type¹ DH1, DH3, DH5

Payload¹ PRBS9, BS00, BSFF, BS0F, BS55

Number of bits 1 to 200,000,000

Impairments – default to table
Frequency offset ±75 kHz
Modulation index 0.28 to 0.35

Modulation index 0.01

resolution

Symbol timing -20 ppm, 0, +20 ppm

Symbol timing resolution 1 ppm

Measurement

Supported BER, number of bit errors,
measurements Number of Rx bits, PER,
number of NACK packets,
number of errored packets,
number of Tx packets. PER only

in normal mode

Number of measurement 3, hopping

channels2

Range 0 to -90 dBm

Resolution 0.1 dB

Accuracy^{4, 5} ±0.6 dB, -35 to -90 dBm

 $\pm 1dB$, > -35 dBm

Sine impairments (applicable for single slot packets, multi-slot packets, and maximum input level)

Modulation frequency 300 Hz to 1.6 kHz

range

Resolution 100 Hz

Maximum deviation 0 Hz to 40 kHz

range

Resolution 1 kHz

'Dirty transmitter' impairments table for Rx sensitivity tests (applicable for single slot packets, multi-slot packets, and maximum input level)

Set of parameters	Carrier frequency offset (kHz)	Modulation index	Symbol timing error (ppm)
1	75	0.28	-20
2	14	0.30	-20
3	-2	0.29	+20
4	1	0.32	+20
5	39	0.33	+20
6	0	0.34	-20
7	-42	0.29	-20
8	74	0.31	-20
9	–19	0.28	-20
10	–75	0.35	+20

 $^{1. \ \} Normal\ mode\ measurements\ made\ with\ hopping\ on,\ NULL\ packet,\ and\ no\ payload.$

^{2.} Internal sequencer enables three measurement channels to be measured consecutively. Measurements on all 79 *Bluetooth* channels are supported.

^{3.} Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range \pm ((2.402 GHz x 10 Hz)/ 10 MHz) \pm 100 Hz = \pm 2402 Hz \pm 100 Hz = \pm 2502 Hz.

^{4.} Verified using CW measurements.

^{5.} Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

Sensitivity – multi-slot packets

Link conditions

Test mode (loopback) Link mode

Hopping On or off Packet type DH1, DH3, DH5

PRBS9, BS00, BSFF, BS0F, BS55 Payload

1 to 200,000,000 Number of bits

Impairments - default to table

±75 kHz Frequency offset 0.28 to 0.35 Modulation index 0.01

Modulation index

resolution

Symbol timing -20 ppm, 0, +20 ppm

Symbol timing resolution 1 ppm

Measurement

Supported BER, number of bit errors,

measurements number of Rx bits, PER, number of NACK packets,

> number of errored packets, number of Tx packets

Number of measurement 3, hopping

channels¹

Range 0 to -90 dBm

Resolution 0.1 dB

Accuracy^{2, 3} ± 0.6 dB, -35 to -90 dBm

 $\pm 1dB$, > -35 dBm

Maximum input level

Link conditions

Link mode Test mode (loopback)

Hopping On or off Packet type DH1, DH3, DH5

Payload PRBS9, BS00, BSFF, BS0F, BS55

1 to 200,000,000 Number of bits

Measurement

Supported BER, number of bit errors, measurements number of Rx bits, PER,

number of NACK packets, number of errored packets, number of Tx packets

Number of measurement 3

channels¹

Range 0 to -90 dBm

Resolution 0.1 dB

Accuracy^{2, 3} ± 0.6 dB, -35 dBm to -90 dB

 $\pm 1 \, dB$, > $-35 \, dBm$

^{1.} Internal sequencer enables three measurement channels to be measured consecutively. Measurements on all 79 Bluetooth channels are supported.

^{2.} Verified using CW measurements.

^{3.} Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

N4010A Option 107 Bluetooth EDR link plus measurements

Bluetooth EDR transmitter tests EDR relative transmit power

Link conditions

Link mode Test mode (loopback, Tx)

Hopping On or off

PRBS9, BS00, BSFF, BS55 Payload Packet type 2-DH1, 2-DH3, 2-DH5, 3-DH1,

3-DH3, 3-DH5

Measurement

Supported measurements Power in GFSK header, power in

PSK payload, relative power between GFSK header to PSK

payload

Number of measure-

3, hopping

ment channels1

Range +23 to -70 dBm

0.01 dBResolution Accuracy² $\pm 0.5 \text{ dB}$

EDR modulation accuracy and carrier frequency stability

Link conditions

Link mode Test mode (loopback, Tx)

Hopping On or off

PRBS9, BS00, BSFF, BS55 Payload 2-DH1, 2-DH3, 2-DH5, 3-DH1, Packet type

3-DH3, 3-DH5

Measurement

Supported measurements Worst case initial frequency

error (ω_i) for all packets (carrier frequency stability), worst case frequency error for all blocks (ω_0) , $(\omega_0 + \omega_1)$ for all blocks, rms DEVM, peak DEVM,

99% DEVM

Number of measure-

ment channels1

3, hopping

+23 to -70 dBm Range

Resolution ±100 Hz carrier frequency

stability and frequency error

Accuracy

Modulation accuracy

N4010A receiver < 2% (nominal)

rms DEVM

N4010A source < 5% (nominal)

rms DEVM

Carrier frequency As frequency reference

stability and frequency ±100 Hz

 $error^3$

EDR differential phase encoding

Link conditions

Link mode Test mode (Tx) Hopping On or off

Payload PRBS9, BS00, BSFF, BS55 Packet type 2-DH1, 2-DH3, 2-DH5, 3-DH1,

3-DH3, 3-DH5

Measurement

Supported measurements BER, number of bit errors,

> number of Rx bits, PER, number of NACK packets, number of errored packets, number of Tx packets, number of HEC, CRC, and NACK error

Number of measure-3, hopping

ment channels1

RF input level range +23 to -70 dBm

Guard interval measurement

Link conditions

Link mode Test mode (loopback, Tx)

Hopping On or off

Payload PRBS9, BS00, BSFF, BS55 Packet type 2-DH1, 2-DH3, 2-DH5, 3-DH1,

3-DH3, 3-DH5

Measurement

Supported measurements Average, maximum, and

minimum guard time

Number of measure-

ment channels1

+23 to -70 dBm RF input level range

3, hopping

Resolution $0.1 \, \mu s$

1. Internal sequencer enables three measurement channels to be measured consecutively. Measurements on all 79 Bluetooth channels are supported.

2. Example, using the 10 MHz reference with accuracy of 10 Hz (1ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range ±((2.402 GHz x 10 Hz)/ 10 MHz) \pm 25 Hz = \pm 2402 Hz \pm 25 Hz = \pm 2427 Hz.

3. Example, using the 10 MHz reference with accuracy of 10 Hz (1ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range ±((2.402 GHz x 10 Hz)/ 10 MHz) \pm 100 Hz = \pm 2402 Hz \pm 100 Hz = \pm 2502 Hz.

Bluetooth EDR receiver tests

EDR Rx sensitivity

Link conditions

Link mode Test mode (loopback) PRBS9, BS00, BSFF, BS55 Payload Packet type 2-DH1, 2-DH3, 2-DH5, 3-DH1,

3-DH3, 3-DH5

Number of bits 1 to 200,000,000

Measurement

Supported measurements BER, number of bit errors,

number of Rx bits, PER, number of NACK packets, number of errored packets, number of Tx packets, number of HEC, CRC, and NACK error

Number of measure-

3, hopping

ment channels¹

Range 0 to -90 dBm

Resolution 0.1 dB

Accuracy^{2, 3} ±0.6 dB, -35 to -90 dBm

 $\pm 1 \, dB$, > -35 dBm

EDR Rx BER floor sensitivity

Link conditions

Link mode Test mode (loopback)

Hopping On or off

PRBS9, BS00, BSFF, BS55 Payload 2-DH1, 2-DH3, 2-DH5, 3-DH1, Packet type

3-DH3, 3-DH5

3, hopping

Number of bits 1 to 200,000,000

Measurement

Supported measurements BER, number of bit errors,

number of Rx bits, PER, number of NACK packets, number of errored packets, number of Tx packets, number of HEC, CRC, and NACK error

Number of measure-

ment channels1

0 to -90 dBm Range

Resolution 0.1 dB

Accuracy^{2, 3} ± 0.6 dB, -35 to -90 dBm

 $\pm 1 \, dB$, > -35 dBm

EDR Rx maximum input level

Link conditions

Test mode (loopback) Link mode

Hopping On or off

PRBS9, BS00, BSFF, BS55 Payload 2-DH1, 2-DH3, 2-DH5, 3-DH1, Packet type

3-DH3, 3-DH5

Number of bits 1 to 200,000,000

Measurement

Supported measurements BER, number of bit errors,

number of Rx bits, PER, number of NACK packets, number of errored packets, number of Tx packets, number of HEC, CRC, and NACK error

Number of measure-3, hopping

ment channels1

0 to -90 dBm Range

Resolution 0.1 dB

Accuracy^{2, 3} ±0.6 dB, -35 to -90 dBm

 $\pm 1 \, dB$, > -35 dBm

- 2. Verified using CW measurements.
- 3. Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

^{1.} Internal sequencer enables three measurement channels to be measured consecutively. Measurements on all 79 Bluetooth channels are supported.

N4010A Option 101 and Option 107 signal source

The N4010A signal source is used in Bluetooth test cases described earlier in this document.

Frequency

Range 2.402 to 2.480 GHz;

79 channels at 1 MHz spacing

Accuracy¹ As frequency reference ±25 Hz

±300 kHz Offset range

±210 Hz, ±200 Hz typical Offset accuracy

Output power

0 to -90 dBm Range

Resolution 0.1 dB

Accuracy^{2, 3} ±0.6 dB, -35 to -90 dBm

 $\pm 1 dB > -35 dBm$

Output VSWR 1.5:1

Modulation

In accordance with Bluetooth Radio specification

version 2.0+EDR

GFSK, DQPSK, D8PSK Type

Modulation index range 0.28 to 0.35

0.01 Modulation index

resolution

GFSK depth accuracy⁴ $\pm 0.5~\mathrm{kHz}$

< 5% (nominal) DQPSK and D8PSK

rms differential error vector magnitude (DEVM)

To Bluetooth specification Baseband filter

Symbol timing -20 to +20 ppm

Symbol timing resolution 1 ppm

N4010A Option 101 and Option 107 signal analyzer

The N4010A signal analyzer is used in Bluetooth test cases described earlier in this document.

Frequency

Range 2.402 to 2.480 GHz;

79 channels at 1 MHz spacing

Accuracy² (center As frequency reference ±100 Hz

frequency ±400 kHz)

Power measurement

+23 to -70 dBm Range Damage level +25 dBm Resolution 0.01 dBAccuracy⁵ ±0.5 dB Input VSWR < 1.5:1

Modulation

Type GFSK, DQPSK, D8PSK

Deviation range $\pm 400~\mathrm{kHz}$ Deviation resolution $0.1~\mathrm{kHz}$

Modulation depth As frequency reference ±100 Hz

DQPSK and D8PSK rms < 2% (nominal)

differential error vector magnitude (DEVM)

accuracy6

Baseband filter 1.3 MHz (compliant to Bluetooth

bandwidth specification), 3 or 5 MHz

^{1.} Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range \pm ((2.402 GHz x 10 Hz)/10 MHz) \pm 25 Hz = \pm 2402 Hz \pm 25 Hz = \pm 2427 Hz.

^{2.} Verified using CW measurements.

Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

Verified by interpolation to static frequency offset measurements. Add 0.02 dB/°C from 30 to 55 °C and 0.025 dB/°C from 20 to 0 °C.

Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range \pm ((2.402 GHz x 10 Hz)/10 MHz) \pm 100 Hz = \pm 2402 Hz \pm 100 Hz = 2502 Hz.

N4010A Option 113 Bluetooth audio generation and analysis¹

Audio routing settings Loopback, audio input/output,

audio generator/analyzer

Audio generator/analyzer

Audio generator

Frequency 125 Hz to 4 kHz, default 1 kHz

Frequency resolution 125 Hz

Level -75 to +3 dBm0, default

-15~dBm0

Level resolution 1 dBm0

Audio analyzer

SINAD (dB), distortion (%), Measurements

frequency (Hz), level (dBm0)

1 to 100 Number of averages

Number of SCO

channels supported

CODEC air interfaces CVSD, A-law, μ -law

supported

Frequency response +0.6 to -1.0 dB

> (320 to 3200 Hz^{2, 3}) See Figure 1 for CVSD frequency response

Maximum input/output $3.28 \text{ V } pk\text{-}pk = 1.16 \text{ Vrms}^{3,4}$

signal levels

For CVSD, recommend level

 $\leq 138 \ mVrms^4$

Distortion/noise

(THD+N)

better than -52 dB (A-law, µ-law) better than -35 dB (CVSD3,4)

see Figures 2a and 2b for CVSD distortion characteristics

Input/output connectors BNC input, BNC output

Input impedance $150 k\Omega$

Output impedance $50 k\Omega (AC coupled)$

Minimum output load 0Ω (AC coupled, no damage

caused by short)

Variation of gain

 $< 0.5 dB^{3, 4}$

(-55 to +3 dBm,

225 to 2040 Hz)

Idle noise better than -64 dBm

(200 Hz to 20 kHz)

Out of band performance better than -30 dB (A-law, \u03b4-law) (4 to 32 kHz) better than -42 dB (CVSD)

^{1.} Qualified in accordance to ITU specification G.711 [8], where 775 mVrms (0 dBm) analog sine wave input voltage is translated to 0 dBm0 digital CVSD transmit signal and 0 dBm0 sine wave CVSD receive signal is output as 775 mVrms (0 dBm) analog voltage. All audio characteristics are nominal.

^{2.} For CVSD this performance only applies within the CVSD linear range.

^{3.} CVSD linear range is defined as signals of 320 to 3200 Hz and level $<-15\ dBm0$ (138 mVrms analogue). Outside the CVSD linear range (e.g. signals of frequencies above 600 Hz with levels > -15 dBm0) the response rolls of due to the slew-rate limitations set by Bluetooth's CVSD algorithm parameters.

^{4.} CVSD distortion (THD+N) at 1020 Hz and level -15 dBm0 is better than 4 percent.

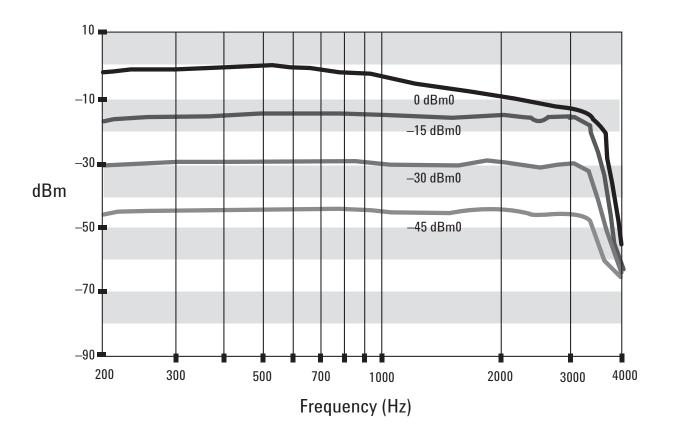


Figure 1. CVSD frequency response

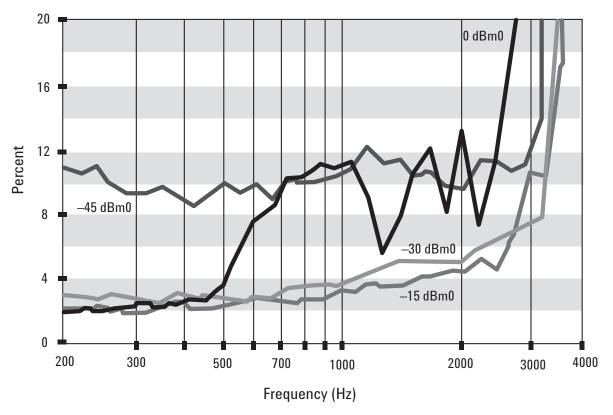


Figure 2a. CVSD distortion percentage characteristic

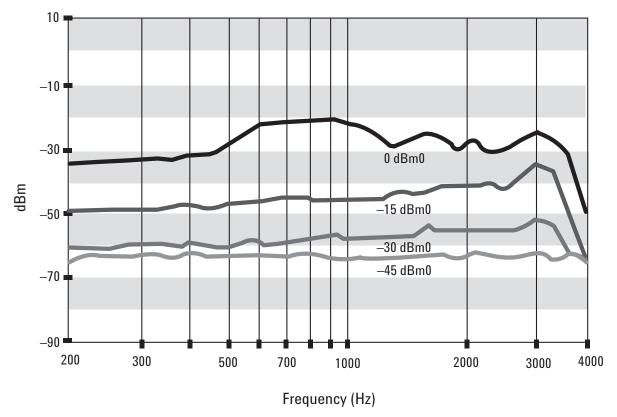


Figure 2b. CVSD distortion dBm characteristic

Wireless LAN specifications

N4010A Options 102/103 WLAN Tx/Rx analysis

Measurements

The table below shows the key measurements covered by the N4010A Options 102/103 and the 89607A WLAN test suite software. For further N4010A/89607A data, refer to the application note Agilent N4010A Wireless Connectivity Test Set Performance Guide Using the 89601A Vector Signal Analysis Software and the 89607A WLAN Test Suite Software, literature number 5989-0637EN.

	N4010A	
Transmitter		
functionality	Options 102/103	89607A
Auto-range	Yes	Yes
	165	165
CW	37	
Average power	Yes	No
CW frequency offset	Yes	No
Bursted OFDM		
Average power	Yes	Yes
Peak power	No	Yes
Center frequency tolerance	Yes	Yes
	(Frequency error)	
Clock frequency tolerance	No	Yes
Constellation error (EVM)	Yes	Yes
Center frequency leakage	Yes	Yes
Spectral flatness	Yes	Yes
Spectral mask	Yes	Yes
Fast OFDM demodulation mea	asurement	
EVM	Yes	No
Frequency error	Yes	No
IQ offset	Yes	No
Gated power	Yes	No
Gated spectrum	Yes	No
Bursted DSSS		
Average power	Yes	Yes
Peak power	No	Yes
Center frequency tolerance	Yes	Yes
	(Frequency error)	
Chip clock frequency tolerance	No	Yes
Center frequency leakage	Yes	Yes
	(Carrier suppression	on)
Predicted suppression	No	Yes
EVM (RMS)	Yes	Yes
EVM (peak)	yes	Yes
Power up ramp	No	Yes
Power down ramp	No	Yes
Spectral mask	Yes	Yes
Fast DSSS demodulation measurement	surement	
EVM (peak)	Yes	No
EVM (RMS)	Yes	No
Frequency error	Yes	No
IQ offset	Yes	No
Gated power	Yes	No
Gated spectrum	Yes	No

Receiver functionality	N4010A Options 102/103	89607A
Standard DSSS waveform file	Yes	No
Standard DSSS sequence file	Yes	No
Standard OFDM waveform file	Yes	No
Standard OFDM sequence file	Yes	No
Blanking marker files	Yes	No
High power mode	Yes	No
CW tone	Yes	No
Sampling rate	Yes	No

N4010A vector signal generator specifications

The specifications apply to the N4010A with Options 102 or 103 installed. The vector signal generator is used in WLAN receiver tests described earlier in this document. N4010A-101 and 107 *Bluetooth* signal source specifications are different and are given in the *Bluetooth* section in this document.

Engaranar manga	9.409 to 9.494 CHz.	
Frequency range	2.402 to 2.484 GHz;	
	4.800 to 5.875 GHz (Option 103	
1	only)	
Frequency accuracy	As frequency reference ±25 Hz ²	
Output power range ¹	2.402 to 2.484 GHz: -10 to -95 dBm	
	4.800 to 5.875 GHz: -15 to -95 dBm	
	802.11a/g OFDM:	
	-13 dBm maximum (nominal)	
	802.11b DSSS:	
	-8 dBm maximum (nominal)	
Absolute amplitude	2.402 to 2.484 GHz:	
accuracy ¹	$\pm 0.9 \text{ dB}^3 (-10 \text{ to } -90 \text{ dBm});$	
	$\pm 0.9 \ dB \ (> -90 \ to \ -95 \ dBm)$	
	4.800 to 5.875 GHz:	
	$\pm 0.9 \text{ dB}^3$ (-15 to -90 dBm);	
	$\pm 0.9 \ dB \ (> -90 \ to \ -95 \ dBm)$	
Resolution	0.1 dB	
Output impedance	50 Ω (nominal)	
Modulation type	Arbitrary based on downloaded	
modulation type	file	
Arbitrary waveform	64 Msa (256 MB RAM;	
v	1 sample = 4 bytes)	
memory	802.11a: < 2% ⁴	
Error vector magnitude	802.11a: \ \(\infty \) \(\infty \) \(\text{10} \) \(\text{4} \)	
	$802.11g: < 2\%^4$	

^{1.} Verified using CW measurements.

Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range ±((2.402 GHz x 10 Hz)/ 10 MHz) ± 25 Hz = ±2402 Hz ± 25Hz = ±2427 Hz.

^{3.} Add 0.013 dB/°C from 30 to 55 °C, add 0.02 dB/°C from 20 to 0 °C.

^{4.} Up to 40 MHz bandwidth.

N4010A vector signal analyzer specifications

When used with 89601A/89607A (requires Option 110 and at least one of Option 101, 102, or 103). For the full N4010A/89601A performance guide refer to application note Agilent N4010A Wireless Connectivity Test Set Performance Guide Using the 89601A Vector Signal Analysis Software and the 89607A WLAN Test Suite Software, literature number 5989-0637EN.

Performance

Sampling frequency 100 MHz digital down-conversion

Quantization 14 bits
Sampling resolution 10 ns
Acquisition buffer 5 ms

Frequency specifications

Frequency range¹ 2.381 to 2.519 GHz

4.800 to 5.875 GHz (Option 103

only)

Frequency resolution 1 MHz

Frequency accuracy² As frequency reference ± 50 Hz IF bandwidth switchable between 22 and 40 MHz Stability (noise $10 \ kHz$: $< -75 \ dBc/Hz$ (nomi-

nal)

sidebands) offset 100 kHz: < -95 dBc/Hz (nominal)

Amplitude specifications

Power measurement +23 to -70 dBm range (2.381 to 2.519 GHz)

+23 to -50 dBm (4.800 to 5.875 GHz)

Maximum safe input level +25 dBm

Absolute power $\pm 0.5 \text{ dB}^3 \text{ (2.381 to 2.519 GHz)}$ measurement $\pm 0.8 \text{ dB}^3 \text{ (4.800 to 5.875 GHz)}$

accuracy²

RF input VSWR < 1.5:1 (return loss: > 14 dB)

(2.381 to 2.519 GHz) < 1.8:1 (return loss: > 10 dB)

(4.800 to 5.875 GHz)

Signal-to-noise ratio $^{4,\,5}$ > 52 dB for 22 MHz bandwidth

(2.381 to 2.519 GHz)

> 45 dB for 22 MHz bandwidth

(4.800 to 5.875 GHz)

Spurious responses < -90 dBm (2.381 to 2.519 GHz);In-band spurious⁶ < -60 dBm (4.800 to 5.875 GHz)

Trigger ranges

Internal trigger power -60 to +23 dBm for 22 MHz

bandwidth; -65 to +23 dBm for 5 MHz bandwidth (2.381 to 2.519 GHz) -65 to 0 dBm for 22 MHz bandwidth (4.800 to

5.875 GHz)

External trigger voltage 3.3 V (TTL)

Trigger delay range -4.5 to 5.2 ms, or time capture

length, whichever is shorter (see performance guide

5989-0637EN)

Trigger hold-off range 20 ns to 0.65 ms

Modulation specifications⁷

Residual error vector 802.11a: < 2% magnitude (EVM) 802.11b: < 2%

802.11q: < 2%

Bluetooth EDR: < 2% (rms DEVM)

This is the center frequency tuning range for a 22 MHz span. With a 40 MHz span, the frequency ranges are 2.39 to 2.51 GHz and 4.809 to 5.866 GHz.

^{2.} Verified using CW measurements.

^{3.} Add 0.02 dB/°C from 30 to 55 °C, add 0.025 dB/°C from 20 to 0 °C.

^{4. 0} dBm input.

Specification applies to instruments serial number GB45460101 or greater, otherwise this specification for the 2.4 GHz band is > 46 dB (22 MHz bandwidth), > 50 dB (5 MHz bandwidth).

Specification applies to instruments serial number GB45460101 or greater, otherwise this specification is < -70 dBm (2.381 to 2.519 GHz).

^{7.} For power levels > -50 dBm.

PC Hardware Specifications

- Microsoft® Windows® 2000 and XP® only
- 2.4 GHz Pentium® or equivalent minimum,
 2.8 GHz recommended
- · 200 MB available on hard drive
- 256 MB RAM minimum, 500 MB RAM recommended
- USB 2.0, TCP-IP LAN, or GPIB connection to test set
- Agilent I/O Libraries Suite 14.1 or greater. For information on Agilent IO Libraries Suite features and installation requirements, please go to: www.agilent.com/find/iosuite/datasheet

N4010A General Specifications

Frequency reference

Frequency 10 MHz

Accuracy

 $\begin{array}{lll} 20 \text{ to } 30 \text{ °C} & & \pm 1 \text{ x } 10^{-6} \text{ (± 1 ppm)} \\ 0 \text{ to } 55 \text{ °C} & & \pm 1.5 \text{ x } 10^{-6} \text{ (± 1.5 ppm)} \end{array}$

Aging (first year) $\pm 1 \times 10^{-6}$ /year 10 MHz input BNC(f), 50 Ω BNC(f), 50 Ω

Power requirements

Voltage 100 to 240 VAC, 47 to 63 Hz

Power 150 VA maximum

Environmental

Operating temperature 0 to 55 °C Storage temperature -40 to +70 °C

Operating humidity 15 to 95% relative humidity

(non condensing)

EMI compatibility Radiated emission is in

compliance with CISPR Pub 11/1990 Group 1 Class A

Inputs/Outputs

Front panel

RF input/output Type-N (f), 50 Ω

Rear panel

 $\begin{array}{lll} 10~\text{MHz REF IN} & & \text{BNC(f), 50 } \Omega \\ 10~\text{MHz REF OUT} & & \text{BNC(f), 50 } \Omega \\ \text{GPIB} & & \text{IEEE-488} \\ \text{LAN} & & \text{RJ-45, 10/100-T} \\ \text{USB} & & \text{USB } 1.0/2.0 \\ \end{array}$

Additional rear panel connectivity with N4010A input/output connectivity Option 110

AUX RF input/output Type-N (f), 50Ω

TRIG IN BNC (f), 50Ω ; input has TTL

compatible logic levels

TRIG OUT BNC (f), 50 Ω ; output has TTL

compatible logic levels

75 MHz IF output SMA (f), 50 Ω Event 1 BNC (f), 50 Ω Event 2 BNC (f), 50 Ω Bluetooth and WLAN 25-way D (f)

triggers, data, and clock

Size and weight		Ordering Information	
Dimensions With handle and	(H x W x D) 105 mm x 370 mm x 390 mm	Model no	Description William Grant Grant
bumpers	105 mm x 370 mm x 390 mm	N4010A	Wireless Connectivity Test Set Bluetooth test
Without handle and bumpers Weight	105 mm x 330 mm x 375 mm	N4010A-101 N4010A-107	Bluetooth EDR link plus measurements
	5.9 kg (12.98 lbs) for N4010A-101 7.2 kg (15.84 lbs) for	N4010A-113	Bluetooth audio generation and analysis
	N4010A-102, 103	N4010A-112	Bluetooth headset profile
		N4010A-102	2.4 GHz wireless LAN Tx/Rx analysis
Regulatory information		N4010A-103	2.4 GHz/5 GHz wireless LAN Tx/Rx analysis
Product safety	Conforms to the following product specifications:	N4010A-104	Fully-flexible arbitrary waveform generation
	IEC61010-1:2001/	N4010A-204	N4010A Signal Studio license
	EN61010-1:2001 CAN/CSA-C22.2 No 1010.1-92	N4010A-110 ¹	Additional input/output connectivity (required with
	Low voltage directive 72/23/EEC	_	N4010A-102/103)
Electromagnetic	Complies with the requirements	N4010A-AX4 ¹	Rack flange kit
compatibility	of the EMC Directive 89/336/EEC	N4010A-191 ¹	Carry handle kit
		Also available when N4010A Option 110 ordered:	
		N4017A	Bluetooth Graphical
			Measurement Application
		N4017A-205	Bluetooth EDR
		89601A	Vector signal analysis software (version 5.20 or greater required)
		89601A-200	Basic vector signal analysis software
		89601A-300	Hardware connectivity
		89601A-AYA	Vector modulation analysis
		89601A-B7R	WLAN modulation analysis (OFDM and DSSS/CCK/PBCC)
		or	
		89607A-100	Basic WLAN test suite (with hardware connectivity)

^{1.} Options 110, AX4, and 191 are supplied as standard with N4010A products ordered after March 2006.

Related Literature

Agilent N4010A Wireless Connectivity Test Set Configuration Guide, literature number 5989-3486EN

Test Multiple Wireless Connectivity Technologies with One Test Platform, brochure, literature number 5989-4150EN

Agilent N4017A Bluetooth Graphical Measurement Application, product overview, literature number 5989-2771EN

Agilent N4010A Wireless Connectivity Test Set Performance Guide Using the 89601A Vector Signal Analysis Software and the 89607A WLAN Test Suite Software, literature number 5989-0637EN

 $89600\ Series\ Wide-Bandwidth\ Vector\ Signal\ Analyzer,$ brochure, literature number $5980\text{-}0723\mathrm{E}$

89607A WLAN Test Suite Software, technical overview, literature number $5988-9547\mathrm{EN}$

Agilent - Next Generation of WLAN Manufacturing Test Solutions, brochure, literature number 5989-1194EN

Test ZigBee™ modules and appliances - today!, product overview, literature number 5989-3980EN

For More Information

For more information on N4010A visit www.agilent.com/find/N4010A

For more information on N4017A Graphical Measurement Application visit www.agilent.com/find/N4017A

For more information on Agilent Technologies' *Bluetooth*, WLAN, and ZigBee™ solutions visit www.agilent.com/find/bluetooth www.agilent.com/find/wlan www.agilent.com/find/zigbee

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Bluetooth is a registered trademark of Bluetooth SIG, Inc., U.S.A. and licensed to Agilent Technologies. Inc.

Microsoft, Windows 2000, and XP are U.S. registered trademarks of Microsoft Corporation.

Pentium is a U.S. registered trademark of Intel Corporation. ZigBee is a trademark of the ZigBee Alliance.

www.agilent.com

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

United States: Korea: (tel) 800 829 4444 (tel) (080) 769 0800 (fax) 800 829 4433 (fax) (080) 769 0900 Canada: Latin America: (tel) 877 894 4414 (tel) (305) 269 7500 (fax) 800 746 4866 Taiwan: (tel) 0800 047 866 China: (tel) 800 810 0189 (fax) 0800 286 331 (fax) 800 820 2816 Other Asia Pacific Europe: Countries: (tel) (65) 6375 8100 (tel) 31 20 547 2111 (fax) (65) 6755 0042 Japan: (tel) (81) 426 56 7832 Email: tm ap@agilent.com (fax) (81) 426 56 7840 Contacts revised: 09/26/05

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2006 - 2005 Printed in USA, June 5, 2006 5989-4035EN